
 

 

 

 

 

 

 

 

EARLY ONLINE RELEASE 

This is a PDF of a manuscript that has been peer-reviewed 

and accepted for publication. As the article has not yet been 

formatted, copy edited or proofread, the final published 

version may be different from the early online release. 

 

This pre-publication manuscript may be downloaded, 

distributed and used under the provisions of the Creative 

Commons Attribution 4.0 International (CC BY 4.0) license. 

It may be cited using the DOI below. 

  

The DOI for this manuscript is  

DOI:10.2151/jmsj.2019-060 

J-STAGE Advance published date: August 18th, 2019 

The final manuscript after publication will replace the 

preliminary version at the above DOI once it is available. 



 

1 

 

Efficacy of possible strategies to mitigate the 1 

urban heat island based on urbanized High-2 

Resolution Land Data Assimilation System (u-3 

HRLDAS) 4 

 5 

Meiling Gao1, Fei Chen2, Huanfeng Shen1*, Michael 6 

Barlage2, Huifang Li1, Zhenyu Tan3, Liangpei Zhang3 7 

 8 

 9 

 10 

1 School of Resource and Environmental Sciences, Wuhan University, Wuhan 11 

430079, China 12 

 13 

2 National Center for Atmospheric Research, Boulder 80301, USA 14 

 15 

3 State Key Laboratory of Information Engineering in Surveying, Mapping and 16 

Remote Sensing, Wuhan University, Wuhan 430079, China  17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

August 04, 2018 27 

 28 

 29 

 30 

 31 

 

*Corresponding author: Huanfeng Shen, School of Resource and 

Environmental Sciences, Wuhan University, Wuhan 430079, China 

Email: shenhf@whu.edu.cn   
 

mailto:shenhf@whu.edu.cn


 

2 

 

Abstract  32 

 33 

Summer heat waves pose a great threat to public health in China. This 34 

paper took Wuhan (one of the four hottest furnaces cities in China) as an 35 

example to explore several strategies for mitigating the surface urban heat 36 

island (UHI) measured by the land surface temperature, including the use of 37 

green roofs, cool roofs, bright pavements, and alternations in urban building 38 

patterns. The offline urbanized High-Resolution Land Data Assimilation System 39 

(u-HRLDAS) was employed to conduct 1-km resolution numerical simulations, 40 

which also accounts for the effects of abundant lakes in Wuhan on UHI 41 

evolution with a dynamic lake model. The diurnal cycle and spatial distribution 42 

of simulated UHI were analyzed under different mitigation strategies. Results 43 

show that considering lake effects reduces the daytime (nighttime) UHI intensity 44 

by about 1.0 K (0.5 K). Employing green roofs and cool roofs are more effective 45 

in mitigating daytime UHI than the use of bright pavements. The maximum UHI 46 

reduction is about 2.1 K at 13:00 local time by replacing 80% of conventional 47 

roofs with green roofs. The UHI mitigation efficiency increases with larger 48 

fractions of green roofs, and increased albedo of roofs and roads. In contrast to 49 

the green roofs, cool roofs and bright pavements which are ineffective in 50 

nighttime, changing urban building pattern to mitigate the UHI is effective 51 

throughout the day. “Height-driven building structure changing” (raising the 52 

building height, and meanwhile changing the fraction of impervious surface in 53 
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each grid to keep the total building volume intact) can reduce the surface UHI 54 

intensity by 0.4-0.9 K, and “density-driven building structure changing” 55 

(distributing building density uniformly and the building height are modified to 56 

make the total building volume unchanged) reduces UHI by 1.2-2.6 K. These 57 

results showed new insights in mitigating the urban heat islands for a mega city 58 

like Wuhan and provides a practical guideline for policymakers to offer a more 59 

habitable city. 60 

 61 

Keyword: urban heat island mitigation, lake, green roof, cool roof, bright 62 

pavement, urban design. 63 
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1. Introduction  64 

The urban heat island (UHI) is a well-known phenomenon where the 65 

temperature in cities is higher than that in surrounding rural regions (Oke 1995; 66 

Rizwan et al. 2008; Kusaka et al. 2012). The UHI magnitude is important to 67 

thermal comfort and stress for residents in cities (Aflaki et al. 2017; Deilami et 68 

al. 2018), and is often responsible for death during summer heatwaves (Burke 69 

et al. 2018; Ward et al. 2016). The UHI effects have been intensifying with rapid 70 

urbanization (Aoyagi et al. 2012; Koomen and Diogo 2017; Mohajerani et al. 71 

2017; Gaur et al. 2018) under changed climate, leading to numerous studies 72 

investigating the spatiotemporal variation of UHI (Cao et al. 2016; Gao et al. 73 

2018; Peng et al. 2011), the driving factors of urban heat effect (Cao et al. 2016; 74 

Mohajerani et al. 2017; Yao et al. 2018a) and mitigation strategies at different 75 

scales and different regions (Aflaki et al. 2017; Kyriakodis and Santamouris 76 

2018; Li et al. 2014; Sharma et al. 2018).  77 

The UHI for a specific region depends on unique characteristics of regional 78 

climatic and geographic conditions (Mohajerani et al. 2017; Yang et al. 2015). 79 

Chinese cities have been experiencing strong heat effects recently. For 80 

example, the city of Wuhan, often referred to as one of the four China’s hottest-81 

furnace cities with 10 million residents (Shen et al. 2016a), experienced 82 

extreme heatwaves in the summer of 2013 with 26 “hot days” (with daily 83 

maximum air temperature exceeding 35°C). The average mortality in Wuhan 84 

during “hot days” was 50.7% higher than “non-hot days” during 1998 to 2006 85 
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summer (Yang et al. 2013). Given the great threat of excessive thermal stress 86 

to human life, it is important to take active strategies to mitigate increasingly 87 

deteriorated urban thermal environments (Sharma et al. 2016; Sharma et al. 88 

2018).  89 

There are several ways to mitigate the UHI (Mohajerani et al. 2017), such 90 

as replacing conventional roofs and roads by reflective materials, making the 91 

environment green and water-related strategies. Green roofs can mitigate 92 

warming and provide cooling benefits by reducing energy consumption 93 

(Lazzarin et al. 2005; Santamouris 2014). Cool roofs, where a conventional roof 94 

is replaced by higher-albedo materials, are also an effective strategy to mitigate 95 

the UHI (Li et al. 2014; Santamouris 2013). Similarly, bright pavements can 96 

reflect a higher portion of solar radiation than conventional road (Aflaki et al. 97 

2017; Ramírez and Muñoz 2012; Zhao et al. 2017), and urban-design 98 

characteristics related to urban green distributions and urban form also 99 

influence the UHI (Dai et al. 2018; Li et al. 2017a; Adachi et al.2014; Kusaka et 100 

al. 2016). Although some studies focused on investigating and comparing 101 

various different mitigation strategies in USA (Zhao et al.2017) and Canada 102 

(Wang et al .2015), there are limited researches regarding to China and most 103 

of them only investigated one or two strategies which are insufficient for urban 104 

heat mitigation research. For example, Liu et al. (2018) investigated the green 105 

roofs and cool roofs in Chengdu-Chongqing metropolitan region; Wang et al 106 

(2016) only studied the white roofs in Beijing-Tianjin-Hubei metropolitan area. 107 
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The mitigation strategies based on urban building pattern traditionally received 108 

less attention compared with the strategies based on materials and vegetation 109 

in Chinese cities. Besides, the mitigation studies in Wuhan are essentially 110 

absent, despite the fact Wuhan is extremely hot in summer. In order to fill the 111 

gap in examining the UHI mitigation for Wuhan, this study focus on Wuhan and 112 

exploring the effectiveness of the following common UHI mitigation strategies: 113 

green roofs, cool roofs, bright pavements, and changing urban building pattern.  114 

Assessing the fidelity of modeled UHI is an important step to study UHI 115 

mitigation with numerical simulations. This problem is further complicated by 116 

the presence of lakes in cities, because some studies have calculated the UHI 117 

intensity (UHII) excluding water body (Haashemi et al. 2016; Imhoff et al. 2010) 118 

while others include them (Wang et al. 2015; Zhang et al. 2010). Considering 119 

the abundant lakes in Wuhan, it is important to estimate the effect of including 120 

water body in the UHI calculation. The primary objectives of this study are to 121 

understand the extent to which lakes affect the UHI calculation in Wuhan, and 122 

the effectiveness of the above-mentioned UHI mitigate strategies. To achieve 123 

this, numerous simulations were conducted with an offline urban canopy model 124 

coupled to a dynamic lake model. Regional high-resolution land-use data and 125 

remotely-sensed land surface temperature (LST) were used to improve the 126 

model and to evaluate its performance. The rest of this paper is organized as 127 

follows: Section 2 presents the study area, models, and analysis methods; the 128 

results and discussion are shown in Section 3; and Section 4 concludes this 129 



 

7 

 

investigation.   130 

2. Materials and methods 131 

2.1 Study region 132 

The metropolitan region of Wuhan (113°41'E-115°05'E, 29°58'N-31°22'N) 133 

(Fig. 1c), the capital city of Hubei Province (Fig. 1b), covers an area of 8494 134 

km2 and has a population of more than 10 million. It is located in the subtropical 135 

zone with a humid monsoon climate, plentiful rainfall and abundant sunshine. 136 

By the definition in the “Chinese national standard QX/T 152-2012: Definition of 137 

climatic season”, the summer in Wuhan lasts for more than 130 days (Chen et 138 

al. 2015). There are 166 lakes located in Wuhan. The Yangtze River, the largest 139 

river in China, flows through the city (Fig. 1c). The total water area of 2217.6 140 

km2 makes Wuhan the city with the most water coverage among all China’s 141 

major cities (Duan and Niu 2018). 142 

2.2 u-HRLDAS model and numerical experiment design  143 

We used the offline urbanized High-Resolution Land Data Assimilation 144 

System (u-HRLDAS) as our principal UHI modeling tool, which is based on 145 

HRLDAS (Chen et al. 2007) and couples the Noah land model (Chen and 146 

Dudhia 2001) with a single-layer urban canopy model (SLUCM, Kusaka et al. 147 

2001). One advantage of offline u-HRLDAS, compared to the fully-coupled 148 

Weather Research and Forecasting (WRF)-Urban model (Chen et al. 2011), is 149 

that it demands much less computational power and can be easily employed to 150 

study UHI (Meng et al. 2013; Monaghan et al. 2014). As a new addition to u-151 
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HRLDAS for this study, a lake model, based on the Community Land Model 152 

version 4.5 (Oleson et al. 2013) with further improvements made by Gu et al. 153 

(2015), was coupled to u-HRLDAS to assess the impacts of water bodies. Then 154 

different UHI mitigation strategies were explored with various u-HRLDAS 155 

simulations. 156 

The u-HRLDAS simulation was executed independently for each model 157 

grid (i.e., no horizontal exchange between grids). For each urban grid, SLUCM 158 

simulates the portion of man-made impervious surfaces, and Noah simulates 159 

the vegetation-covered portion (parks, lawns). The merged LST of each urban 160 

grid is weighted average of simulated LST for man-made and natural surfaces 161 

by urban fraction ( _urban frac ) in the following equation: 162 

_ * _ (1 _ )* _LST urban frac LST urban urban frac LST rural= + −  (1) 163 

where the LST_rural  (K) is derived by Noah, and the _LST urban  (K) is 164 

calculated by SLUCM according to the following: 165 

_ / ( * * )LST urban Ta SH Rhoo Cpp Chs= +     (2) 166 

where Ta  (K) is  the 10-m air temperature used to drive u-HRLDAS; Rhoo  167 

(kg m-3) is air density; Cpp (J K-1 kg-1) is the heat capacity of dry air; Chs  (m s-168 

1) is the surface exchange coefficient for heat and moisture. SH  (W m-2) is 169 

sensible heat flux calculated by Eq. (3). 170 

_ * _ _ * _ _ * _SH SH roof frac roof SH wall frac wall SH road frac road AH= + + +   (3) 171 

where AH   (W m-2) is anthropogenic heat. _ ,SH roof   _ ,SH wall   and 172 

_SH road   are sensible heat flux of roof, wall and road respectively, and 173 
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_ ,frac roof   _ ,frac wall   _frac road   are weighting coefficient of roof, wall, and 174 

road. 175 

The surface energy balance can then be formulated as:  176 

Rn AH SH LH G+ = + +            (4) 177 

where Rn (W m-2) is net radiation, LH  (W m-2) and G (W m-2) are latent and 178 

ground heat fluxes respectively. 179 

The simulation domain (Fig. 2) covers the Wuhan and its surrounding areas 180 

with a 1-km grid spacing (159 × 159 grid cells). Canopy layer UHI (CUHI) based 181 

on air temperature and surface UHI (SUHI) based on LST are two popular heat 182 

indexes, revealing different UHI characteristics. CUHI are strongest with tall 183 

buildings and narrow streets and are relatively small in daytime. SUHI has a 184 

complex spatial pattern mainly due to building geometry and surface thermal 185 

properties (Oke et al. 2017; Voogt and Oke 2003). Lacking dense observations 186 

of air temperature in Wuhan, 1-km LST from MODIS (MODerate-resolution 187 

Imaging Spectroradiometer) is used to assess model simulations. MODIS LST 188 

has been shown to be effective in overcoming difficulties associated with the 189 

lack of in-situ observations over large areas (Shen et al. 2016a; Yao et al. 190 

2018b).  191 

In summer of 2013 from 23 July to 18 August, there were 26 “hot days” 192 

exceeding 35 °C (all days except 4 August). Daily maximum air temperature 193 

exceeded 39 °C during 11-14 August. Strong extreme heat brings great threat 194 

to public health (Habeeb et al. 2015). Based on availability of high-quality 195 
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MODIS LST, we selected 1-15 August 2013 as our analysis period. u-HRLDAS 196 

simulations were driven by atmospheric forcing conditions from the 3-hourly 0.1° 197 

China Meteorological Forcing Dataset (CMFD, Yang et al. 2010), which has 198 

widely been used for land-surface modeling (e.g., Zhang et al. 2016). Using 199 

CMFD, the model is spun up from 1 January 2010 to 31 July 2013, a sufficient 200 

length for simulated temperature in urban canyons (temperature of roofs, roads, 201 

and walls) to reach equilibrium (Chen et al. 2011).  202 

In u-HRLDAS, the default land-use and land-cover (LULC) dataset is 203 

based on 500-m MODIS LULC from the WRF pre-processing system, which 204 

has only one generic urban category (i.e., category-32 for high-density 205 

residential). This dataset also has problems to correctly capture fine-scale 206 

landscape features in Wuhan. For instance, it shows a discontinuous Yangtze 207 

River (the blue-colored water area within the yellow rectangle in Fig. 2a). 208 

Therefore, we used the 30-m GlobeLand30-2010 and Landsat 8 data for 31 209 

July 2013 to improve the description of regional LULC in Wuhan.  210 

The GlobeLand30-2010 was upscaled to 1 km to obtain the impervious 211 

surface percentage (ISP) and lake percentage in each 1-km grid. When the lake 212 

percentage in each grid is more than 50%, the grid is marked as lake. The urban 213 

land use is then divided into three categories according to ISP: low-density 214 

residential with ISP 0.15-0.7, high-density residential with ISP 0.7-0.9 and 215 

commercial areas with ISP > 0.9. Meanwhile, the forest data in GlobeLand30-216 

2010 were used to correct the WRF default MODIS data. The GlobeLand30-217 
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2010 represents the LULC in 2010, but our simulated year is 2013. There is a 218 

big gap between the two years from the impervious percentage based on 219 

Landsat 8 in 2010 and 2013 (Shen et al. 2016b). To capture the urbanization 220 

from 2010 to 2013 and avoid the errors introduced by remotely sensed data 221 

mosaic, the 30-m Landsat data on 31 July 2013 covering the main region of 222 

Wuhan was used to update the urban land use in each 1-km grid. The updated 223 

LULC dataset was marked as ULULC. 224 

As seen in Fig. 2, the ULULC (Fig. 2b) shows an expanded and more 225 

detailed urban area, fixes the discontinuity problem of Yangtze River traversing 226 

the city (the yellow rectangle in Fig. 2b) and has more accurate description of 227 

lakes.  228 

In the baseline control simulation (hereafter CNTL), the roof height was set 229 

to 8, 15 and 25 m respectively for low-density residential, high-density 230 

residential and commercial. The irrigation parameterization (Yang et al. 2016) 231 

was used in u-HRLDAS to represent lawn and tree irrigation practices in Wuhan. 232 

The MODIS albedo for 28 July 2013 on Wuhan downtown areas was used to 233 

specify the albedo of roof, wall and road in SLUCM. Also, the urban fraction was 234 

calculated from 30-m Landsat data and then aggregated to the 1-km modeling 235 

grid. The method proposed by Hu et al. (2014) was selected here to 236 

quantitatively compare MODIS LST (MOD11A1 and MYD11A1) with u-HRLDAS 237 

LST. More detailed parameter configurations in CNTL are listed in Table 1. 238 

An additional 11 simulations (listed in Table 2) were designed to assess the 239 
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impacts of UHI calculation by including water areas and various UHI mitigation 240 

strategies for Wuhan. Then the SUHI based on u-HRLDAS LST in the 241 

simulations with different settings were analyzed in this study. 242 

The LAKE run was conducted by coupling the aforementioned lake model 243 

to the u-HRLDAS. The lake model is a one-dimensional mass and energy 244 

balance scheme with 20-25 model layers, including up to 5 snow layers on the 245 

lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake 246 

scheme is independent of u-HRLDAS. To further quantify the impacts of water 247 

areas, the NOIRRI and NOIRRI_LAKE simulations were conducted similar to 248 

CNTL and LAKE but without irrigation effects. It is noteworthy that the lake 249 

areas are empty in CNTL and NOIRRI because of the absence of lake model. 250 

In Lake and NOIRRI_LAKE runs, the surface temperature of lake grids is 251 

calculated by the lake model (Oleson et al. 2013; Gu et al, 2015). The irrigation 252 

process affects all the vegetation in urban grids due to the irrigation is turned 253 

on in CNTL and LAKE.  254 

A large percentage of green roof fraction is needed to achieve noticeable 255 

effects (Sharma et al. 2016), thus the GR05 and GR08 were conducted with 256 

the hypothesis that buildings in Wuhan are uniformly covered by 50% or 80% 257 

of green roofs. When the green roofs are implemented, the Eq. (3) will be 258 

changed to Eq. (5). 259 

= _ * _ (1 _ ) _ * _ * _

_ * _ _ * _

SH SH roof frac roof frac gr SH gr frac roof frac gr

SH wall frac wall SH road frac road AH

− + +

+ +
  (5) 260 

where _frac gr  is fraction of green roofs and _SH gr  is sensible heat flux of 261 
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green roofs. 262 

Imran et al. (2018) and Wang et al. (2016) changed the albedo of the urban 263 

roof from 0.3 to 0.85, and the values of 0.5 (CR05) and 0.7 (CR07) were chosen 264 

for cool roofs in our experiments. The albedo of concrete pavement can be as 265 

high as 0.7 with the incorporation of slag or white cement (Ramírez and Muñoz 266 

2012), therefore, BP05 and BP07 were conducted similarly to CR05 and CR07 267 

but for road. When cool roofs and bright pavements are employed, the net 268 

radiation in Eq. (4) will be changed due to the albedo of cool roofs and bright 269 

pavements. In addition, Table 3 lists the surface parameters of green roofs, cool 270 

roofs and bright pavements. 271 

The following two scenarios (density-driven building structure changing 272 

and height-driven building structure changing) were designed to test the 273 

mitigation performance of changing urban building structure. In our simulation, 274 

the total building volume stays the same as the current, which provides the 275 

convenience to compare with CNTL simulation. 276 

The built-up density varies greatly in different city zones. Li et al. (2017b) 277 

reported that the UHI depends on building height and building density, so we 278 

conducted the experiment SPD (Spatial Pattern changes of Density) in which 279 

the building density was altered primarily. For SPD, the total urban area in the 280 

domain was calculated and the average urban area was then allocated to each 281 

urban grid, i.e., urban density is the same across the original urban grids. 282 

Because all grids of each urban land use type were assigned the same urban 283 
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building height in the u-HRLDAS, the urban building height was also changed 284 

to keep the total building volume consistent with the current. This structure is 285 

essentially the “density-driven building structure changing”. The spatial 286 

distribution of urban building heights and urban fraction in SPD are shown as 287 

Fig. 3b and Fig. 3e. 288 

According to the overall urban planning for Wuhan in 2030 289 

(http://gtghj.wuhan.gov.cn/zl/zg2030/show.asp?Id=100671&cid=2229), the 290 

current fraction of high-rise buildings in Wuhan is much lower than other 291 

megacities (e.g., Beijing, Shanghai) in China, and the future city planning will 292 

likely increase building heights. Therefore, the SPH (Spatial Pattern changes of 293 

Height) case is designed such that the urban building height was raised 294 

primarily. To keep the total building volume unchanged, the impervious fraction 295 

was reduced by 20% in each urban grid while the building height increased by 296 

20%. This structure is essentially the “height-driven building structure changing”. 297 

Figure 3 demonstrates the urban fraction and urban building height in each grid 298 

in CNTL, SPD, and SPH.  299 

2.3 Definitions of UHII, EUHII and ELST 300 

To analyze temporal evolution of UHII, a method used in previous studies 301 

(Shen et al. 2016a; Zhou et al. 2013) was selected:  302 

                      1 2UHII T T= −            (6) 303 

Here, 1T   (K) is the averaged LST in the area within the third ring road as 304 

shown with dark-red line in Figs. 2a and 2b or in Fig. 1c, and 2T  (K) is the 305 

http://gtghj.wuhan.gov.cn/zl/zg2030/show.asp?Id=100671&cid=2229
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averaged LST for the area within the Wuhan administrative boundary line 306 

shown with black line in Figs. 2a and 2b or in Fig. 1c but without the third ring 307 

road in Wuhan. In the LAKE and NOIRRI_LAKE run, the UHII was calculated 308 

including water bodies. In other simulations, the water bodies were not 309 

considered.  310 

In temporal analysis, to describe the efficacy of each mitigation strategies 311 

in UHI, the effect of UHII (EUHII) was used to represents the change in UHII.  312 

_ _EUHII UHI miti UHII cntl= −             (7) 313 

where _UHII cntl  represents the UHII in the CNTL run and _ mitiUHII represents 314 

the UHII in simulations using various mitigation strategies. Negative EUHII 315 

values mean a UHII reduction for a given mitigation strategy while positive 316 

values mean an enhancement. 317 

Besides, in spatial analysis, the effect of LST (ELST) was used to describe 318 

the impact of each mitigation strategies on LST compared with CNTL run. ELST 319 

is calculated as follows: 320 

( , ) ( , ) _ ( , ) _ELST i j LST i j miti LST i j cntl= −          (8) 321 

where ( , ) _LST i j cntl  and ( , ) _LST i j miti  are the LST of location (i, j) in CNTL 322 

and other simulations with mitigation respectively. 323 

3. Results and discussion 324 

3.1 Evaluation of u-HRLDAS simulated LST based on land areas 325 

In qualitative evaluation, Figs. 4 and 5 shows that the spatial distribution 326 

pattern of simulated LST in the CNTL run is very similar to the observed daytime 327 
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and nighttime LST from MODIS. There are biases between MODIS LST and 328 

simulated LST, but the bias for most grid is less than 4 K in the daytime (Fig. 4) 329 

and less than 2 K in the nighttime (Fig. 5). This result is consistent or better than 330 

previous studies. For instance, Monaghan et al. (2014) showed that the 331 

simulation bias of Houston is around 5 K in the daytime and it is strongly related 332 

to vegetation types and the night bias patterns are more homogeneous. 333 

Vahmani and Ban‐Weiss (2016) also showed that the night bias is more 334 

homogenous than daytime bias in Los Angeles. 335 

In quantitative evaluation, as shown in Table 4, the RMSE during daytime 336 

and nighttime is less than 4 K and 2 K, respectively. In other studies, Monaghan 337 

et al. (2014) showed that the daytime RMSE is about 3.5 K to 9 K and the 338 

nighttime RMSE is 1.5 K to 3.5 K, depending on land type. Vahmani and Ban‐339 

Weiss (2016) introduce albedo and vegetation fraction in WRF-Urban using 340 

remotely sensed data in Los Angeles and the improved simulation RMSE is 341 

about 4.3 K in daytime and 1.8 K in nighttime. The evaluation statistics shown 342 

in Table 4 are better than in previous studies, likely due to the introducing of 343 

urban fraction in each urban gird, the modification of urban building height, and 344 

the improved description of urban land use. In addition, the simulated accuracy 345 

differences among cities may be affected by the different basic climatology in 346 

each city. Given these verifications, the control u-HRLDAS simulation (CNTL) 347 

can serve as a baseline simulation in our investigation of UHI and its mitigation 348 

strategy for Wuhan. 349 
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3.2 Impacts of water areas on the UHI calculation  350 

Table 5 lists the evaluation statistics by comparing simulated water LST 351 

with MODIS LST. The overall RMSE is around 2-3 K, which is a reasonable 352 

range. 353 

Figure 6 shows the spatial distribution of mean LST in CNTL and LAKE run. 354 

Obviously the lake surface temperature is lower than its surrounding grids, and 355 

including the lake model fills the blank of the lake grids.  356 

To explore the impacts of including water bodies on UHI intensity 357 

calculation, Fig. 7a confirms that considering water bodies reduces UHII and 358 

shows the daytime UHII in LAKE is about 1 K lower than that in CNTL while the 359 

nighttime UHII is about 0.5 K lower. The same difference exists between 360 

NOIRRI_LAKE and NOIRRI (Fig. 7a). However, Yao et al. (2018b) shows that 361 

including water bodies in UHII calculation overestimates summer-daytime and 362 

underestimates summer-nighttime UHII by 0.28 K and 0.16 K, respectively 363 

(averaged for 31 cities in China). One plausible reason for this discrepancy is 364 

that the Wuhan Metro area comprises ample lakes in both urban areas and 365 

surrounding rural areas. The location of the lakes and the diurnal variation 366 

characteristics of water temperature are the possible reasons which change the 367 

UHII, therefore, the impacts of water bodies on UHI may differ among different 368 

cities. As shown in Fig. 7b, the diurnal variation of lake LST is relatively small, 369 

compared to the diurnal variation of LST over other land-cover types (as shown 370 

in Fig. 7c). Therefore, including the lake areas in UHII calculation may affect the 371 
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UHII variations. The temperature of different regions (T1 and T2) in different 372 

simulations shows the similar diurnal cycle tendency (Fig. 7c). All of them are 373 

unimodal and the maximum LST reaches at around 13:30, while the minimum 374 

appears at around 4:30. In the region within the third ring road of Wuhan (LST 375 

is marked as T1), the LST in CNTL is higher about 2 K than in LAKE at around 376 

noon, meanwhile, the LST in NOIRRI is higher than that in NOIRRI_LAKE. In 377 

the region outside the third ring road but within the administrative boundary line 378 

of Wuhan (the LST is represented by T2), the difference of T2 in CNTL and 379 

LAKE is about 1 K at around noon, which is lower than the difference of T1 (2 380 

K). In nighttime, the including of water bodies in LAKE (or NOIRRI_LAKE) 381 

increases T1 and T2 compared with CNTL (or NOIRRI), but the increase of T2 382 

is higher than the increase of T1, which causes the reduction of UHII calculated 383 

by T1 minus T2 (Fig. 7a). It is obvious that the temperature difference between 384 

daytime and nighttime in LAKE and NOIRRI_LAKE is smaller than in CNTL and 385 

NOIRRI. This is caused by the small diurnal cycle range of lake LST (Fig. 7b). 386 

However, the diurnal variation tendencies of UHII are similar in these four 387 

different runs. Besides, the slope denoting “the change rate” of T2 and T1 is not 388 

the same at specified time point (Fig. 7c). For example, the slope of T2 is 389 

different from the slope of T1 at local time 17:30, therefore some sudden 390 

changed points exist in the diurnal variation of UHII (Fig. 7a). In above, including 391 

water bodies in the UHII calculation for Wuhan has a non-negligible effect on 392 

the UHI strength but has a little effect on the diurnal cycle tendency of UHI.  393 
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Including water bodies in defining UHI strength is particularly important for 394 

a city like Wuhan with abundant lakes. However, in the following discussions, 395 

considering that the urban heat mitigation strategies only work for urban grid 396 

and excluding lake areas can simplify the computation and discussion, we will 397 

focus on analyzing impacts of various UHI mitigation strategies using u-398 

HRLDAS simulations that only include land areas. 399 

3.3 Impacts of green roofs, cool roofs, and bright pavements on the strength of 400 

UHI 401 

Green roofs show prominent urban heat island mitigation performance (Fig. 402 

8) especially in daytime. The albedo of the green roofs is set to 0.2 (Table 3) in 403 

the GR08 and GR05 simulation which is lower than traditional roofs (0.3 is set 404 

in the CNTL simulation), thus the net radiation increases in daytime shown in 405 

Figs. 9a and 9b. The evaporation of soil water and the transpiration of 406 

vegetation covert more radiation to latent heat flux (Figs. 9a and 9b), and the 407 

sensible heat flux decreases and subsequently the UHII is lower than CNTL 408 

(Fig. 8). Roof temperature of each layer in green roofs is lower than in 409 

conventional roofs as shown in Fig. 10a. The diurnal variation tendency of roof 410 

temperature in green roof is smoother than in traditional roofs (Fig. 10a). With 411 

the insignificant evapotranspiration and the absence of solar radiation, the 412 

nighttime changes of latent heat flux and sensible heat flux is small (Figs. 9a 413 

and 9b), causing a negligible cooling efficacy of temperature (Fig. 8). The 414 

decrease of daytime LST is consistent with Li et al. (2014), Sharma et al. (2016) 415 
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and Yang et al. (2016). The highest EUHII (in both GR08 and GR05) is achieved 416 

at around 13:00 local time, which also agrees with the green-roof study for 417 

Chicago (Sharma et al. 2016). There is a slight reduction (less than 0.2 K) in 418 

nighttime UHII. This result agrees with studies for Chicago (Sharma et al. 2016) 419 

and Washington. DC (Li et al. 2014), but it differs from a slight nighttime 420 

warming effect in Phoenix, Houston (Yang et al. 2016) and California 421 

(Georgescu 2015). Many factors may contribute to the varying efficacy of 422 

employing green roofs, such as the albedo, soil moisture, thermal capacity, 423 

thermal conductivity, local climate, and specific building characteristics 424 

(Santamouris 2014; Smith and Roebber 2011). 425 

During the period between sunrise (05:30) and sunset (19:00), the net 426 

radiation in the CR and BP scenario is lower than in CNTL (Figs. 9c-f), because 427 

a larger portion of the incoming solar radiation is reflected by cool roofs or bright 428 

pavements compared with conventional materials, leading to an decrease in 429 

sensible heat fluxes (Figs. 9c-f). Subsequently, the CR05, CR07, BP05 and 430 

BP07 produce lower LST in urban grids, leading to lower UHII (Fig. 8). Similarly, 431 

the temperature of each layer in cool roofs is lower than that in the CNTL 432 

simulation (Fig. 10b). Bright pavement is not as effective at lowering urban heat 433 

as altering roof materials (Fig. 8). Previous studies indicated that the impacts of 434 

bright pavement have a strong dependency on location (Santamouris et al. 435 

2012; Yang et al. 2015). The weak efficiency of bright pavement in Wuhan may 436 

be caused by the majority of roads inside the city being easily influenced by 437 
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building shadows. As shown in Figs. 9c-f, increasing roof albedo reduces net 438 

radiation more compared with the bright-pavement experiment. The maximum 439 

of CR-induced change of net radiation reaches about 130 W m-2 in CR07 and 440 

about 65 W m-2 in CR05, but the maximum net radiation changes due to the 441 

bright pavement is about 50 W m-2 in BP07 at local time 12:00 and about 25 W 442 

m-2 in BP05. The cooling effects of CR07 (Fig. 8) exceed 1.8 K at 12:30. 443 

Santamouris (2014) indicates that with the roof albedo increases of 0.1, the 2-444 

m temperature will be reduced by about 0.10 to 0.33 K. In our study, when the 445 

roof albedo changes from 0.3 to 0.5 (CR05) and 0.7 (CR07), the maximum UHII 446 

reduction is about 0.9 K and 1.9 K, respectively, which are stronger than that of 447 

Santamouris (2014). This is reasonable because LST is more sensitive to 448 

surface property changes than 2-m temperature. In nighttime, with the absence 449 

of solar radiation and weak atmospheric turbulence, the heat flux changes due 450 

to the cool roofs and bright pavement are very small (Figs. 9c-f), which may 451 

result in a small reduction of UHII (Fig. 8). 452 

From the spatial distribution of ELST, high-coverage green roofs (GR08) 453 

are the most effective at reducing LST by more than 1.2 K in most urban grids 454 

(Fig. 11b). High-albedo cool roofs (CR07) show ELST between -0.8 to -1.2 K in 455 

most urban areas (Fig. 11d). The ELST of medium-coverage green roofs (GR05) 456 

is about -0.4 to -1.2 K (Fig. 11a) while the ELST of medium-albedo cool roofs 457 

(CR05) is about -0.4 to -0.8 K (Fig. 11c) in the center urban region of the domain. 458 

Bright pavement has a weaker efficiency with reducing LST lower than 0.4 K 459 
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(Figs. 11e and 11f). Combing the temporal analysis in Fig. 8, it can be concluded 460 

that employing a higher fraction of green roofs, and higher albedo of roofs and 461 

roads can effectively mitigate UHI. This agrees with studies in Chicago (Sharma 462 

et al. 2016), Washington (Li et al. 2014) and Melbourne (Imran et al. 2018). 463 

Although the ELST by modifying pavement characteristics shows little spatial 464 

heterogeneity within the city (Figs. 11e and 11f), the effect of green roofs and 465 

cool roofs show a strong heterogeneity (Figs. 11a-d) partially based on urban 466 

category. The most effective LST mitigation is for the commercial urban-467 

category with a reduction of 1.29 K in GR08 and of 1.01 K in CR07 as shown 468 

in Fig.12. But for the low-density residential, the LST reduction of different 469 

strategies are lower than 0.5 K. This may be related to several factors such as 470 

the lower roof coverage in low-density than that in commercial area. Therefore, 471 

the ELST of using green and cool roofs are related to the urban categories.   472 

Moreover, for the same urban land-use category, different strategies show 473 

different performance (Fig.12). For example, in high-density residential areas, 474 

the ELST of green roofs (-0.51 and -0.84 K) and cool roofs (-0.39 and -0.79 K) 475 

are higher than that for bright pavement (-0.08 and -0.16 K). The ELST of using 476 

bright pavement is similar for different urban land-use categories, likely due to 477 

the road being easily shaded by surrounding buildings. The boxes representing 478 

green roofs are longer than others over each urban category in Fig. 12 implying 479 

more daily variation. The main difference among simulated days is the weather 480 

condition. Therefore, significant daily variations with green roofs are most likely 481 
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caused by changes in weather condition. Other mitigation strategies do not 482 

seem to vary much with weather conditions during the simulated period. This is 483 

because the evaporative cooling strength of green roofs depends on changes 484 

in precipitation, radiation, temperature and humidity (Yang et al. 2016). 485 

In other studies, Wang et al. (2015) compared the effects of different UHI 486 

mitigation strategies for Toronto, Canada. The cool pavement, cool roof, and 487 

vegetation strategies are investigated in that paper, and the results indicated 488 

that different strategies show different performance, which agrees with our 489 

results. Zhao et al. (2017) suggested cool roofs as the preferred strategy for 490 

UHI mitigation in comparison to green roofs, street vegetation, and reflective 491 

pavement in the United States and southern Canada. The UHI mitigation 492 

intensity may depend on specific city and model simulations, which may be due 493 

to the different model simulation settings, the study scale, and the local climate 494 

condition. 495 

3.4 Impacts of the urban building pattern on the strength of UHI 496 

Because the UHI is intimately related to urban forms (Sobstyl et al. 2018; 497 

Zhou et al. 2017), the impacts of changing urban-building patterns on the UHI 498 

intensity are tested here. Compared to the CNTL run, the SPD run reduces UHII 499 

by 1.2-2.6 K while the SPH run reduces UHII by 0.4-0.9 K throughout the day 500 

(Fig. 13a). Fig. 13b reveals that the LST reduction of SPD is more than 1.6 K in 501 

the center urban region of Wuhan, which is much more effective compared with 502 

mitigation strategies represented in Fig. 11. In SPH, the LST reduction is higher 503 
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than 0.8 K in most urban grids (Fig. 13c). In contrast to the mitigation strategies 504 

only being effective in reducing daytime UHII (Fig. 8), changing urban-building 505 

pattern is effective for both in daytime and nighttime. 506 

For SPD (moving buildings from dense districts to sparse districts), the 507 

vegetation spaces in the original dense built-up areas in the center region of 508 

Wuhan are now increased. For example, the vegetation fraction in high-density 509 

residence and commercial region increase due to the reduction of urban 510 

fraction in SPD (Fig. 3e) compared with CNTL simulation (Fig. 3d). In these 511 

regions, the upward solar radiation and longwave radiation decrease (Figs.14c 512 

and 14e) with less impervious areas (Fig. 3e) in SPD. However, more 513 

vegetation fraction increases latent heat fluxes during daytime (Figs.15c and 514 

15e). The maximum increase of latent heat flux is about 150 W m-2 in high-515 

density residence and about 300 W m-2 in commercial region, accompanied by 516 

decrease in sensible heat fluxes ranging from about 100 W m-2 and 200 W m-2 517 

for high-density residence and commercial regions respectively in SPD (Figs. 518 

15c and 15e). This results in a reduction of LST in Fig.13b. Notably, when 519 

moving buildings from dense areas to sparse areas, the SPD ELST becomes 520 

positive in those sparse areas (Fig. 13b) due to increased impervious fractions. 521 

The LST is low in original sparse built areas (Fig. 6a) with relative lower 522 

impervious fraction before changing the urban building density (CNTL run), so 523 

the moderate increase of LST would not bring discomfort in these areas. These 524 

girds with increasing temperature are located in the low-density residence. Both 525 
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the upward solar radiation and upward longwave radiation increase in the low-526 

density residence (Fig. 14a). The urban fraction of some grids in the low-density 527 

residence in SPD (Fig. 3e) is higher than in CNTL (Fig. 3d), hence the latent 528 

heat flux decreases (Fig. 15a) due to the reduction of vegetation fraction in 529 

these grids. The averaged sensible heat flux of low-density residence in SPD 530 

increase and its maximum is about 25 W m-2, which cause the increase of LST 531 

in some grids (Fig. 13b).  532 

For SPH (raising building heights with increases vegetation fraction), the 533 

radiation is simultaneously affected by the decrease of the impervious surface 534 

(Fig. 3f), and the increase of the shadow area induced by the building height 535 

changes (Fig. 3c). In each urban land-use type, the simulated results reveal 536 

that the upward solar radiation decreases in daytime, and the upward longwave 537 

radiation decreases throughout the day (Figs. 14b, 14d and 14f). These 538 

changes lead to the net radiation changes in all urban grids, because the 539 

downward shortwave and longwave radiation stay intact. In each type of urban 540 

land-use categories, latent heat fluxes increase during daytime due to the 20% 541 

increase of vegetation fraction in each urban grid; sensible heat fluxes decrease 542 

(Figs. 15b, 15d and 15f) and subsequently cools the city (Figs. 13a and 13c). 543 

The maximum reduction of sensible heat flux is about 10 W m-2, 40 W m-2, and 544 

60 W m-2 for the low-density residence, high-density residence and commercial 545 

areas, respectively.  546 

In addition, there are some fluctuations in the diurnal variation of shortwave 547 



 

26 

 

radiation changes around noontime (Fig. 14). The fluctuations appeared due to 548 

the variations regarding to the slopes of radiation curves in each case at specific 549 

time points. For example, the diurnal variation tendencies of the upward 550 

shortwave radiation are similar over low-density residence in CNTL, SPD and 551 

SPH (Fig. 16), but the tendency of the radiation changes (SPD minus CNTL or 552 

SPH minus CNTL) are dissimilar (Figs. 14a and 14b) because of the different 553 

slopes of the radiation curves. The different slopes of the upward radiation 554 

indicate the change rates of the radiation varies among CNTL, SPD and SPH, 555 

likely as result of different effects of shadowing and reflection of urban 556 

morphology among these simulations. 557 

In SPH run, raising building height leads to the increase of building shadow 558 

and also modifies the radiation budgets. The changes of the building shadow 559 

affect the radiation of road and wall. The net solar radiation of the impact of 560 

shadowing in SPH is lower than that in CNTL simulation (Fig. 17). The 561 

maximum decrease of the net solar radiation is about 45 W m-2 at around local 562 

noontime (Fig.17).  563 

The expansion of the shadow region, the decrease of the roof areas in 564 

urban part, and the changes of impervious surface fraction collectively result in 565 

cooler urban grids in SPH than in CNTL. From the above analysis, changing 566 

urban building structure such as a scenario like SPH is efficient for a city like 567 

Wuhan to mitigate urban heat.  568 

4. Conclusions 569 
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With the goal to provide practical guidance for urban planners and 570 

policymaker to make the city more habitable, this study combines satellite data 571 

and model simulations to explore the effectiveness of different strategies to 572 

mitigate the surface UHI measured by LST for Wuhan, and the main findings 573 

are: 574 

1) Considering lake effects reduces the UHII by about 1 K (0.5 K) in 575 

daytime (nighttime), but does not significantly affect diurnal cycle tendency of 576 

UHI. 577 

2) Employing green roofs, cool roofs, and bright pavements reduce UHII, 578 

but their efficacy in nighttime is negligible. By contrast, changing urban building 579 

patterns can mitigate UHI throughout the day. 580 

3) Using green roofs and cool roofs are more effective than using bright 581 

pavements, and their mitigation efficacy increases with larger fractions of green 582 

roofs and higher albedo in roofs or roads. Using 80% green roofs can reduce 583 

LST more than 1.2 K in most urban areas, and the maximum reduction of UHII 584 

is more than 2 K at about 13:00. Cool roofs with albedo of 0.7 produce its 585 

maximum cooling efficacy by the changes of EUHII about 1.8 K at 13:00, and 586 

the averagely ELST in most urban areas is about 0.8-1.2 K. 587 

4) The effect of green roofs and cool roofs depend on urban land-use 588 

categories, and the effects of green roofs also depend on weather conditions. 589 

5) Height-driven building-structure changes (i.e., raising the building height, 590 

and meanwhile changing the fraction of impervious surface in each grid to keep 591 
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the total building volume intact) can reduce the surface UHI intensity by 0.4-0.9 592 

K, and the density-driven building-structure changes (i.e., uniformly distributing 593 

building density uniformly and the building height are modified to make the total 594 

building volume unchanged) reduces UHI by 1.2-2.6 K. 595 

This study shows the efficacy of various strategies to mitigate daytime and 596 

nighttime UHI for Wuhan. The most effective mitigation strategy is to modify the 597 

urban building density, which is perhaps the most difficult to implement for a 598 

mature city. However, it can provide a meaningful guideline for the urban 599 

designer towards expanding the city extent. Using green roofs is more effective 600 

than changing building heights in daytime, but the effect of changing building 601 

heights is more effective to reduce nighttime UHI.  602 

Based on this study, mitigating UHI effects in Wuhan in future urban 603 

development can be achieved by increasing the fractions of high-rise buildings 604 

and homogenizing city building densities. In daytime UHI mitigation, both green 605 

roofs and cool roofs are effective. Without considering the aesthetic, install cost, 606 

conservation potential and other reasons in the practical application, 80% green 607 

roofs is a better choice than cool roofs with albedo as 0.7, though cool roofs are 608 

more easily implemented.  609 

This study provides some initial results regarding the impacts of changing 610 

urban building patterns on UHI mitigation by demonstrative design, but more 611 

analysis of other factors such as the exact locations of buildings, ventilation 612 

corridors, and green spaces like parks and lawns on UHI should be investigated 613 
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in future studies. 614 
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(b) and SPH (c) run, and the spatial distribution of urban fraction used in 858 

CNTL (d), SPD (e) and SPH (f) run. 859 
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MODIS, averaged from 1-15 August 2013 for local time 10:30 and 13:30; c 861 

and d are similar to a and b, but they are based on CNTL run; e and f describe 862 

the bias between simulated LST based on CNTL run and MODIS LST. The 863 

black points in each sub-figure represent the urban grids which are the urban 864 

land type represented by 31, 32 and 33 in Fig. 2b. The white areas are the 865 

lake areas. Unit: K). 866 
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The diurnal variation of LST in the region within the third ring road of Wuhan 878 
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August 2013 (Unit: K). 881 
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to a, but for GR08, CR05, CR07, BP05 and BP07 respectively. LH: latent heat 887 

flux. SH: sensible heat flux. G: ground heat flux. RN: net radiation.) 888 



 

57 

 

 1007 

Fig. 14 The diurnal variation of mean surface energy changes over all the grids 1008 

of each urban land type, averaged from 1-15 August 2013 (a, c and e are the 1009 

surface energy in SPD minus them in CNTL over low-density residence, high-1010 

density residence and commercial region respectively. b, d and f are similar 1011 

to a, c and e, but for SPH simulation. SWUP means upward shortwave 1012 

radiation; LWUP represents upward longwave radiation). 1013 
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Fig. 15 The diurnal variation of mean surface heat flux changes over all the 1015 

grids of each urban land type (a, c and e are the surface heat flux in SPD 1016 

minus them in CNTL over low-density residence, high-density residence and 1017 

commercial region respectively. b, d and f are similar to a, c and e, but for 1018 

SPH simulation. G_SH means the mean sensible heat flux over all the grids 1019 

of specified urban land type, and the value used here does not represent the 1020 

impervious part but the whole urban girds. G_LH is similar to G_SH, but for 1021 

latent heat flux. All those results are averaged from 1-15 August 2013). 1022 
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Fig.16 The diurnal variation of mean upward shortwave radiation over the low-1024 

density residence, averaged from 1-15 August 2013. 1025 
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Fig.17 The diurnal variation of mean net shortwave radiation of the impact of 1027 

shadowing, averaged from 1-15 August 2013. 1028 
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Table 5 RMSE of LST at water bodies when compared with MODIS LST 1045 

Local time 10:30 13:30 22:30 01:30 

RMSE(K) 2.776 3.075 2.169 2.552 
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